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ABSTRACT 

An algebra is inherently non-finitely (Q-)based if it is not a member 
of any locally finite (quasi-)variety, whose (quasi-)identities are finitely 
based. We prove that no finite semigroup is inherently non-finitely Q- 
based. This is in marked contrast to the case of varieties, where there are 
many inherently non-finitely based finite semigroups which have all been 
described by the second author. 

1. I n t r o d u c t i o n  

Let  us first recal l  some basic  facts and  defini t ions from universa l  a lgebra  (see 

[Malcev], [Cohn]). A v a r i e t y  is a class of universal  a lgebras  given by  i d e n t i t i e s ,  

i.e. formulas  of the  t y p e  

( V x l , . . . ,  z , , )  u = v 

where u = u ( x l , . . . ,  xn)  and  v = V ( X l , . . .  , Xn) are terms.  For  example ,  the  class 

of all  abe l i an  groups  is a var ie ty  of groups given by the iden t i ty  (Vx, y) x y  = yx .  
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A quas i -var ie ty  is a class of universal algebras given by quas i - ident i t ies ,  

i.e. formulas of the type 

(Vxl , . . . ,x~)  ul = v l & . ' . & u m  = vm ~ u = v 

where ui, vi, u, v are terms of variables x l , . . . ,  x,~ (see [Malcev] for details). For 

example, the class of all torsion free groups is a quasi-variety of groups given by 

the following infinite set of quasi-identities: 

{x p = 1 ~ x = 1 IP is a prime}. 

Here and below we do not write quantifiers in the expressions of identities and 

quasi-identities. 

By theorems of Birkhoff and Malcev one can also define a variety as a class 

closed under taking direct products, homomorphisms, and subalgebras, and one 

can define a quasi-variety as a class closed under taking direct products, sub- 

algebras, and ultraproducts [Malcev]. Given any algebra A one can define the 

variety var A (quasi-variety qvar A) generated by A as the minimal variety (quasi- 

variety) containing A. If A is finite then qvar A consists just of all subalgebras 

of direct products of A [Malcev]. To obtain the variety var A, one has to take all 

homomorphic images of algebras from qvar A. 

It is almost clear that if A is finite then both var A and qvar A are local ly  

finite,  i.e. all finitely generated algebras from these classes are finite. The con- 

verse statement is not true: Not every locally finite variety (quasi-variety) is 

generated by a finite algebra. 

One of the main problems in the theory of varieties and quasi-varieties is the 

problem of describing all finite algebras A such that  var A (resp., qvar A) may be 

given by a finite number of identities (resp., quasi-identities). An algebra A with 

vat A (qvar A) given by a finite number of identities (quasi-identities) is called 

finitely based (finitely Q-based) .  

Every finite group is finitely based. This is the well known and difficult theorem 

of Oates and Powell [Neumann]. A finite group is finitely Q-based if and only if 

its Sylow Subgroups are abelian. This is a theorem of Ol'shanskii [Olsh]. Thus 

in the case of groups complete information is known. 

In the general case the situation is far more complicated. There is the McKenzie 

type reduction theorem which reduces the question of the description of finitely 

based finite algebras to the case of groupoids (algebras with one binary operation) 
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[McKenzie]. In order to reduce the class of algebras which need to be investigated, 

Mursky [Mursky] and Perkins [Perkins] introduced the concept of inherently non- 

finitely based algebras. 

A finite universal algebra is called i n h e r e n t l y  non- f in i t e ly  based  if it cannot 

belong to any locally finite variety given by a finite number of identities. 

The importance of this concept is straightforward. If a finite algebra A is 

inherently non-finitely based then every finite algebra B having A as a subalgebra 

or a homomorphic image is inherently non-finitely based also, and, in particular, 

is not finitely based. Indeed, as was mentioned above, var B is locally finite, and 

contains A. Thus it is enough to find one inherently non-finitely based algebra 

to significantly reduce the class of algebras under investigation. 

There is a remarkable theorem of McNulty and Shallon [McNSh] which shows 

that the associativity of the operation has much to do with the property of being 

finitely based. 

THEOREM 1 (McNulty and Shallon): Let A be a groupoid with identity and 

zero element. Suppose that A does not satisfy any identity of the type x = f ( x )  

where f is a non-trivial term. Then A is either inherently non-finitely based or 

a semigroup. 

Then it turned out that  there are plenty of inherently non-finitely based finite 

semigroups, and the second author described them all [Sap3], [Sap4]. To present 

one of his descriptions, we need the definition of the so called Zimin words. Z imin  

words  are defined by induction: 

Z1 ~- X l , . . . ,  Znq-1 -~- Z n x n - b l Z n .  

THEOREM 2 (M. Sapir): A finite semigroup S is inherently non-finitely based iff 

S does not satisfy a non-trivial identity of the type Zn = W where n -- [S[ 2 and 

W is any word different from Zn. 

Using the fact that  var S is locally finite, it is easy to verify that  Theorem 2 

gives an effective description of all finite inherently non-finitely based semigroups. 

These results (and many others which we cannot mention here for obvious 

reasons) show that the investigation of finite finitely based algebras, though not 

complete, is quite successful. 

The concept of an inherently non-finitely Q-based finite algebra is similar 

to that  of an inherently non-finitely based finite algebra, and was explicitly 

introduced by Pigozzi in 1988 [Pigozzi]: 
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A finite universal algebra is called i n h e r e n t l y  non- f in i t e ly  Q-based  if it 

cannot belong to any locally finite quasi-variety given by a finite number of quasi- 

identities. 

But unlike the case of inherently non-finitely based algebras, there are no 

known examples of finite inherently non-finitely Q-based algebras. It seems to be 

difficult to construct such an example. This is strange because one can present 

very many examples of finite algebras with a slightly weaker property: 

A finite algebra A is called basic [Sapl] if every finite algebra B containing A 

is not finitely Q-based. 

From the results of Ol'shanskii [Olsh], and Sapir [Sapl], it follows that every 

finite group and even every finite semigroup without two-sided ideals is either 

basic or finitely Q-based. In particular, every finite non-abelian nilpotent group is 

basic. From the results of [Sap2], it follows that  many other classes of semigroups 

also contain basic semigroups. 

This makes the following theorem, which is the main result of this paper, very 

surprising. 

THEOREM 3: Every finite semigroup belongs to a locally finite finitely based 

quasi-variety, i.e. there is no inherently non-finitely Q-based finite semigroup. 

The Pigozzi problem of whether there exists an inherently non-finitely Q-based 

finite algebra remains open*. As was mentioned in [Pigozzi], this problem is 

closely connected with the following one: For every finite algebra A, is there 

a finitely based quasi-variety between qvarA and varA (see [Pigozzi], problem 

9.11)? It is clear that  if this problem has a positive solution then there are no 

inherently non-finitely Q-based finite algebras. This problem is related to the 

following problem from logic: Can the set of tautologies of any finite matrix be 

deduced from finitely many tautologies by using finitely many inference rules 

(all necessary definitions and other interesting related problems may be found in 

[Rautenberg] and [Pigozzi])? 

Now it's time to mention a connection between identities, quasi-identities and 

symbolic dynamics. First of all we can reformulate the definitions of inherently 

non-finitely based and inherently non-finitely Q-based algebras in order to show 

that  the problem of showing that  an algebra is inherently non-finitely (Q-)based 

* We have learned while this paper was in press that such an algebra has been 
constructed by Lawrence and Willard in [LW]. 
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is in fact a Burnside type problem about infinite algebras. 

LEMMA 1: A finite algebra A is inherently non-finitely (Q-)based iff for every n 

there exists an infinite finitely generated algebra Bn such that all n-generated 

subalgebras of B~ belong to (q)var A. 

Proof: Let A be an inherently non-finitely (Q-)based algebra. Then the (quasi)- 

variety defined by all (quasi-)identities of A containing no more than n variables 

is finitely based (see [Malcev]). Hence this (quasi-)variety cannot be locally finite. 

Therefore it contains a finitely generated infinite algebra Bn. Every n-generated 

subalgebra of this algebra satisfies all (quasi-)identities of A, and so it belongs to 

(q)var A. 

Conversely, suppose A is not inherently non-finitely (Q-)based, but such alge- 

bras Bn exist. Since A is not inherently non-finitely (Q-)based, there exists a 

finitely based locally finite (quasi-)variety ]/containing A. Let n be the number 

of variables in (quasi)-identities which define ]/. Then all these (quasi-)identities 

hold in the algebra Bn. Therefore B,~ C ]/. This contradicts the facts that ] / i s  

locally finite and Bn is infinite and finitely generated. 

By this lemma, in order to prove that a semigroup is not inherently non- 

finitely (Q-) based, we have to prove the finiteness of certain finitely generated 

semigroups. As was shown in [Sap3] (see the remark before Lemma 9 below) 

there is a natural way to assign to each finitely generated semigroup S, a sym- 

bolic dynamics ~I(S), i.e. a closed subset of the (Tikhonov) product space X z 

which is stable under the shift homeomorphism (this homeomorphism shifts every 

sequence from X z one position to the right). This symbolic dynamics consists of 

all irreducible infinite (in both directions) words over the set of generators of S. 

Many important properties of f~(S) reflect useful properties of S. In particular 

the fact that every symbolic dynamics contains a uniformly recurrent trajectory, 

plays an important role in the proof of finiteness of finitely generated semigroups 

(see [Sap3], [Sap5]). 

Another important idea that we are going to present in this paper is that  

there exists a connection between quasi-identities of semigroups and identities of 

inverse semigroups. Recall that  an inverse semigroup is a semigroup S such that  

for all x in S there is a unique y in S such that x = xyx and y = yxy. It is known 

[Petr] that  a semigroup is inverse if and only if it is isomorphic to a semigroup of 

partial bijections on a set X, that is closed under inversion of partial functions. 
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Furthermore S is inverse if and only if for each x in S, there is an element y in 

S such that x = x y x  and e f  = f e  for all idempotents e, f in S. 

It follows that (just as for groups) inverse semigroups can be considered as 

a semigroup with additional unary involutary operation -1. Inverse semigroups 

are a variety defined by the associative law, the involution laws and the following 

laws: x x - l x  = x ,  x x - l y y  - 1  -- y y - l x x  - 1  (see [CP], [Petr]). In particular the 

famous Perkins semigroup [Perkl], the multiplicative semigroup of the following 

matrices 

{ ( 0  0 )  ( 1  0 )  ( 0  1 )  ( 0  0 )  ( 0  0 )  ( 1  0 ) }  
0 0 ' 0 0 ' 0 0 ' 1 0 ' 0 1 ' 0 1 ' 

is an inverse semigroup where -1 is the operation of transposition. It was proved 

in [Sap3] that a Perkins semigroup considered as a semigroup is inherently non- 

finitely based . Recently the second author [Sap5] proved that a Perkins semi- 

group considered as an inverse semigroup is no longer inherently non-finitely 

based . Moreover, the main theorem of [Sap5] proves that there are no inher- 

ently non-finitely based finite inverse semigroups considered as semigroups with 

involution. It turned out that the main structural property of inverse semigroups 

that is used in the proof of this theorem is expressible by identities. In the case of 

arbitrary semigroups an analogous property is only definable by quasi-identities. 

This observation helped us to formulate and prove the main theorem of this 

paper. 

2. P r o o f  o f  M a i n  T h e o r e m  

Let S be a semigroup. Recall that Green's relation 7~ [CP] is defined by s ~ t  

iff s S  1 = t S  1. We define sT~*t  if and only if s T  1 = t T  1 in some semigroup 

T containing S. The following "internal" characterization of the relation R* is 

known ILl. We include the proof here for the sake of completeness. 

LEMMA 2: Let S be a s e m i g r o u p .  T h e n  sT~*t  i f  a n d  o n l y  i f  f o r  a l l  x ,  y E S 1, 

x s  = y s  .'. '~ x t  = y t .  

P r o o f :  Assume that sT~*t .  Then s T  1 = t T  1 in some semigroup T containing S. 

Thus there are elements u, v E T 1 such that s u  = t and t v  = s .  Let x, y E S 1. 

Then x s  = y s  implies that x t  = x s u  = y s u  = yr .  Similarly, x t  --  y t  implies that 

x s  = y s .  
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Conversely, assume that  x s  = y s  r x t  = yt .  Consider the right regular 

representation p: S --~ FR(S 1) from S into the monoid FR(S 1) of functions acting 

on the right of (the set) S 1. I t  is easy to check [CP] that  for any set X,  two 

functions f ,  g E F R ( X )  satisfy f F R ( X )  = g F R ( X )  if and only if Ker ( f )  = Ker(g) 

where Ker ( f )  = {(x,y)] x f  -- y f } .  Clearly the condition x s  -- y s  ~ x t  = yt  

is equivalent to the fact that  Ker(p(s)) = Ker(p(t)) and thus (identifying S with 

p ( S ) )  we have sT~t in F R ( S  1) so that  s ~ * t .  

I t  is easy to verify that  T~* is a left, congruence and that  T~ C_ T~* on any 

semigroup S. We will also be interested in the associated quasi-order _<R* on S 

defined by s _<R- t iff s <_R t in some T containing S, that  is s T  1 C t T  1. 

LEMMA 3: Le t  S be a semigroup .  T h e n  s <_R" t i f  and on ly  i f  

x t  = y t ~ x s  = ys.  

Proos Similar to Lemnm 2 using the fact that  f _<R g in F R ( X )  if and only if 

Ker(g) C_ Ker( f ) .  

Recall that  an element x of a semigroup S is regular if there is a y E S such 

that  x y x  = x.  It  is known that  x is regular iff there is an idempotent e = e 2 E S, 

such that  e ~ x .  In this case ex  = x.  S is a regular semigroup if every element of 

S is regular. 

LEMMA 4: Le t  S be a s emigroup  and let x , y  E S .  I f  x and y are regular and 

x <_n* Y, then x <_~ y. In part icular,  i f S  is a regular semigroup,  then  <_Te*=<_n 

and  Tl* = T~. 

Proof" Supposex_<n .  y. Let e = e 2 T ~ x a n d f = f 2 ~ y w h e r e e ,  f E  S. Let T 

be such that  x_<n  y i n T .  T h e n x  = yt  for some t E T 1. Let s E S be such 

that  x s  = e. T h e n e  = y t s  so that  e _<~. y. Since yT~f ,  and T/ C_ R* C_<n. 

we have e < n .  f .  Thus e = f t '  for some t E T 1 and thus e = re .  Therefore 

x = e~ = r e x  = y z e x ,  where y z  = e, z E S 1. Therefore, x = y ( z e x )  and since 

z ex  E S 1, we have x _<n Y. 

Let A = {al, a2 , . . .}  be a countable alphabet. Let u , v  E A +, the free semi- 

group on A. We say that  a semigroup S satisfies u <_~. v (u <_n v, uT~*v, 

uT tv )  iff for all homomorphisms r : A + ~ S, ur  _<Te- Vr (ur <_Te r e ,  Ur162 

ur162 
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LEMMA 5: Let S be a semigroup and let u, v E A +. Let x and y be variables 

in A, not occurring in either u or v. Then S satisfies u <_re* v i f  and only i f  S 

satisfies the quasi-identity xv  = yv ~ xu  = yu. 

The proof of Lemma 5 is clear given Lemma 3. 

COROLLARY 1: Let u ,v  E A +. Then Q(u ,v)  = { S [ S  satisfies u <_n* v} is a 

quasi-variety of  semigroups. 

Notice that  in general, the class { S [ S  satisfies u _<re v} is not a quasi-variety. 

For example, the group of integers Z satisfies x _<re y, but the semigroup of 

natural  numbers N < Z does not satisfy this condition. We note however that  

for inverse semigroups in signature (2, 1) we have a stronger result. 

LEMMA 6: Let u and v be in the free inverse semigroup on A, FIS(A). Then 

V(u,  v) = { S [ S  is an inverse semigroup satisfying u <_~. v} 

= {S[S  is an inverse semigroup satisfying u <_re v} 

= {S[ S satisfies the identity u u - l v v  -1 = uu-1} .  

Proofi The first equality follows from Lemma 4. The second equality follows 

from the known fact that  u _<re v in an inverse semigroup iff u u - l v v  -1 = uu -1. 

COROLLARY 2: V(u,  v) defined above is a variety of inverse semigroups. 

Thus the condition "S satisfies u _<n* v" can be defined by an identity in 

the variety of inverse semigroups, but only a quasi-identity in the variety of 

semigroups. This is the main difference between the main result of this paper  

and that  of [Sap5]. 

We say that  a semigroup is of finite height h, if the longest chain sl _<n s2 _<re 

�9 " __Te sk has length h. Recall the definitions of the Zimin words Z1 = xl ,  Zn+l = 

ZnXn+lZ,~ where x~+l is a new variable. We define Z~ to be the prefix of Z~ 

consisting of all but the last letter. (It is easy to see that  the last letter of Z,~ is 

xl . )  Thus if we let Z~ = 1, the empty word, we have Z~+lt = Z~x~+IZn~ for all 

n > l .  

LEMMA 7: Every semigroup of  finite height h satisfies Z~TtZ,~ with n = h + 1. 

Proo~ Since Z,~ = Z~Xl; it is clear that  every semigroup satisfies Zn _<n Z ' .  

Now assume S has height h. Let r : { X l , . . . , x ~ }  + ~ S. We must show that  

ZnCTtZ~r in S where n = h + l .  First note that  it suffices to prove that  ZIr162 

for some i < n. This is because an easy induction shows that  if i <_ n, then Z~ = 
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YiZ{ and Z~ -- Y~Z~ where Y~ --- Zix~+lZix~+2...Zix,~...Zix{+l. Therefore 

Z~r162 ~ Z,~r = (Y~Z~)r162162 since 7~ is a left congruence. 

Now Z~r >_T~ Z2r _>n Z~r  _>T~ Z~r >_n Znr is an T~-chain in S. Since 

n > h, one of the inequalities Z~r _>n Z~r cannot be strict and thus Z~r162 

as desired. 

COROLLARY 3: Let S be a semigroup of height h. Let x, y be variables not 

among { x l , . . . ,  xn} where n = h + 1. Then S satisfies the implication 

= y z n  x z "  = y z ' .  

Proo~ By Lemma 7, S satisfies Zn7~Z~. So S satisfies Z'~ _<T~ Z~ and thus 

Z~n _<7r Z~. The result follows from Lemma 5. 

Remarks: (1) Of course, the condition Z,~TiZ" is stronger than Z~ _<~. Z,~, but  

only this last condition can be defined by quasi-identities. 

(2) Let Q,~ = (S  I SsatisfiesxZ,~ = yZn ~ zZ" = yZ '} .  Then Q~ is a 

quasi-variety. Notice that Q1 = {SI S is right cancellative}, so more generally 

Qn consists of semigroups in which every element xl  cancels in the context of 

left factors of the form t i 

It is known and easy to prove that a right cancellative semigroup S (i.e. a 

member of Qa) is locally finite if and only if S is periodic and all subgroups of S 

are locally finite. The following non-trivial lemma is an extension of this result 

to Q~ and is a key to the proof of the Main Theorem. 

LEMMA 8: Let n > 1 and let S c Q~. Then S is locally finite if  and only if S 

is periodic and all subgroups of S are locally finite. 

Proo} Clearly if S is locally finite, then S is periodic and all subgroups of S 

are locally finite. Assume then that S is a periodic semigroup in Q,~ and that  all 

subgroups of S are locally finite. 

In the proof of this lemma we will crucially use so-called u n i f o r m l y  r e c u r r e n t  

words. Let us recall some definitions and results. 

Let X be a finite alphabet, X z be the set of all sequences infinite in both 

directions. We simply refer to these as inf in i te  words .  An infinite word W is 

called u n i f o r m l y  r e c u r r e n t  if for every set of (finite) subwords w l , . . ,  wk of W 

there exists a number N such that every subword of W length N contains all 

wl, i = 1 , . . . ,  k. It is an easy corollary from [Fur] (see [Sap3] for details) that 
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for every infinite word W there exists a uniformly recurrent word W' such that 

every subword of W' is a subword of W. 

The following argument which first appeared in [Sap3] makes uniformly recur- 

rent words a very useful tool in dealing with Burnside type problems. 

Let S = (X> be an infinite finitely generated semigroup (the same argument 

may be applied for any universal algebra). Then there is an infinite set T of words 

over X such that  every element of S represented by a word of T cannot be rep- 

resented by words over X of less length. Such words will be called i r r educ ib le .  

It is clear that  every subword of an irreducible words is also irreducible. Now, in 

every word of T, mark a letter which is closest to the center of these word. There 

must be an infinite subset T1 of T which have the same marked letters, an infinite 

subset T2 of T1 of words which have the same subwords of length 2 containing 

the marked letters, . . . ,  an infinite subset T~ of Tn-1 of words which have the 

same subwords of length n containing the marked letters, and so on. Therefore 

there is an infinite word W such that every subword of W is a subword of a 

word from T. Thus every subword of W is irreducible. Infinite words with this 

property will be called i r r e d u c i b l e  too. As was mentioned above there exists an 

uniformly recurrent irreducible word W'.  Therefore we have proved the following 

result (see [Sap3]). 

LEMMA 9: For every infinite finitely generated semigroup S = (X> there exists 

a uniformly recurrent irreducible word over X .  

The proof of the following lemma is (a small) part of the proof of proposition 

2.1 in [Sap3]. 

LEMMA 10: Let U be a uniformly recurrent word, UlaU2 be an occurrence of  

letter a in U where U1 is a word infinite to the left, U2 is a word infinite to the 

right. Then for every natural number n there exists an endomorphism r of  the 

free semigroup such that U3r = Ula for some word U3 infinite to the left, 

Cn(xl) -- a, and [r _< A(n,  U) where the number A(n,  U) depends only on 

U and n. 

Proof." For n = 1 the statement is trivial. Suppose that  we have found A(n,  U) 

and Cn. Let N be big enough that  every subword of U of length N con- 

tains any subword of U length A(n,  U). Then we can represent U3r as 

U4r162 for some word Ua, infinite to the left, and finite nonempty 

word v, [v[ < N. Let CnTl (X i )  = ~)n(Xi) for i < n and Cn-kl(Xn+l)  = V. Then 
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Ula = U4r = U4r  and r = a. Therefore we can 

let A ( n  + 1, U) = N + 2A(n ,  V) .  The lemma is proved. 

LEMMA 11: Let U be a uni formly  recurrent  word. Le t  u and v be consecut ive  

subwords  o f  U wi th  ]u[ > A(n ,  U). Then  Qn satisfies uvTi*u, that  is, Qn satisfies 

the  quasi - ident i ty  x u v  = yuv  ~ x u  = yu.  

Proo~ Let p be the longest prefix of v such that  the implication x u p  = yup  

x u  = y u  follows from the defining implication of Qn. If p = v we are done. 

Otherwise v -- paq for some a E A, q E A*. Since upa is a subword of U 

and [upa[ > A(n ,  U),  we can write upa = Ulr for some homomorphism 

r { X l , . . . , x ~ }  + -+ A + where r  -- a, by Lemma 10. It  follows that  up -- 

ulr  Therefore, xupa  = yupa ~ x u l r  = y u t r  ~ (by definition 

of Qn) X U l r  = y u l r  ~ x u p  =- yup ~ x u  = yu.  This contradicts the 

choice of p and the Lemma is proved. 

We can now complete the proof of Lemma 7. Suppose that  there exists a 

periodic infinite finitely generated semigroup S = (A) which belongs to Q,~. 

Then, by Lemma 9, there exists a uniformly recurrent irreducible word U over 

A. 

Let u be a subword of U of length A ( n ,  U). Since U is uniformly recurrent 

we can write U in the form U . . . .  u v l u v 2 u v 3 . . ,  where for all i, luvi[ <_ B 

for some constant B. By Lemma 11, S satisfies uT~*uviu for all i. Therefore, 

u = uviu t i  for some ti E Ti and some semigroup Ti containing S. I t  follows that  

u = (uvi)'~ut'~ for all n > 0. Since uvi E S and S is periodic, ei = (uvi)  ~ is an 

idempotent for some n > 0. It  follows that  u = eiu. That  is, u = (uv i )nu  so that  

(uvi)  ~+1 = uvi.  I t  follows that  uvi is in a subgroup of S and that  u v J ~ u  in S. 

We now have for any i, j E Z the idempotents ei and ej generate the same 

principal right ideal. I t  is easy to check that  this is equivalent to the fact that  

eie j  = ej and eje i  = ei. Let Gi be the maximal  subgroup of S whose idempotent 

is ei. I t  follows easily that  right multiplication by ei induces an isomorphism 

from Gj to Gi. Thus for all integers i and all k __ 0, all products ( u v i - k ) . . .  (uvi)  

are in the same subgroup G~ of S. Each such product can be rewritten as: 

[(uv~_k)e i] . . . [ (uv i_ l )e~](uv i )  where e -- (uvl)  n = e 2 is the identity element 

of Gi. All products above are in the subgroup Hi of Gi generated by X i  = 

{(uvi ) ,  ( u v i - j ) ( u v i ) n l j  >_ 0}. But each element of X i  has length bounded by 

(n + 1)B and so X i  is finite. Therefore Hi is finite and it follows that  there are 
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j r k such that  (uv~_j). . .  (uv~) = (uv , - k ) . . .  (uvi). This contradicts the fact 

that U is irreducible and completes the proof. 

We have the following interesting corollary of the above proof. 

LEMMA 12: Let r X + --* S be a surjective homomorphism and let S be periodic 

and in Q,{. Let U be a uniformly recurrent word over X .  Then there is a natural 

number B such that i f  u and v are subwords of U of length >_ B, then ur and vr 

generate the same two sided ideal. Furthermore, i f  u is a subword of U of length 

>_ B, then ur is regular. 

Proof: First note that  since U is recurrent, U contains only a finite number of 

letters. Let A(n, U) and B be the constants constructed in the above proof. We 

have seen that  if u is a subword of U, lul _> B, then ur is a regular element 

of S. Let v be any subword of U. Since U is uniformly recurrent , uxvyu is a 

subword of U for some x, y E X +. The proof above implies that uxvyTZu ii~ S, 

that is (uxvyz)r  = ur for some word z E X +. Therefore ur is in the two sided 

ideal generated by vr We have shown that  an arbitrary subword of U of length 

> B is in the two sided ideal generated by any subword of U. Therefore any two 

subwords of U of length > B generate the same two sided ideal. 

In the language of the Green relations [CP], the above corollary shows that  

long enough subwords of a uniformly recurrent word are J -equ iva len t  when 

mapped into a member of Q,~. This corollary can be thought of as a proof that 

periodic members of Q,~ satisfy a "uniform descending chain condition". That  is, 

uniformly recurrent words only represent elements from a finite number of distinct 

principal two sided ideals. See [Sap5] for an example of a periodic semigroup in 

Q3 that does not satisfy the descending chain condition on principal two sided 

ideals. 

We now complete the proof of the Main Theorem. Let S be a finite semigroup 

of height h, and let qvar(S) be the quasi-variety generated by S. Then S E Qn 

for any n > h. It  is easy to see that  the intersection of qvar(S) and the class of 

all groups is the quasi-variety generated by all subgroups of S, or equivalently, 

the quasi-variety generated by G the direct product of all subgroups of S. This 

quasi-variety is contained in var(G), the variety generated by G. Now var(G) 

is defined by one identity v ( x l , . . . , x , ~ )  = 1, by the theorem of Oates-Powell. 

We may suppose that  m > h. Let F = F,~(qvar(S)) be the free object in the 

quasi-variety generated by S on m generators. It is well known that F is a finite 
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semigroup so has a minimal  idempotent  e. Let u be a word tha t  represents e in 

F .  Then  S satisfies the identity: 

(1) u = u 2. 

For every element x of F ,  exe belongs to the maximal  subgroup of F tha t  has e 

as identi ty element. Therefore, S satisfies the identity 

(2) v ( u x l u , . . . , u x ~ u )  = u .  

Also S satisfies x p = x p+q for some p > 0, q > 0. 

We have seen tha t  S is in the quasi-variety Q defined by the implicat ion xZ,~ = 

yZn =~ x Z "  = y Z ' ,  identi ty x p = x p+q, and identities (1), (2). Now any group 

H satisfying (1) and (2) satisfies v = 1. Thus  H E var(G) and therefore H is 

locally finite. Therefore Q is locally finite by Lemma 8 and we are done. 
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